

Leveraging the Power of IntelliSense
By Travis Vandersypen, Senior Software Developer, EPS Software Corporation

Abstract

This whitepaper explores the IntelliSense capabilities of Visual FoxPro 7 and how you can
extend the functionality in the event additional functionality is required or may be helpful. We will
discuss what the IntelliSense features of Visual FoxPro 7 offer to us as well as how to configure
the native features of IntelliSense to more of what we need or desire.

White Paper

2 Leveraging the Power of IntelliSense

Contents

What Does IntelliSense Offer?..3

Configuring IntelliSense ...4

General Options...4

Types Options..5

Custom Options ...5

Advanced Options..6

Extending Visual FoxPro’s IntelliSense Capabilities ..8

Writing Custom Scripts...8

Summary..11

EPS Software Whitepaper 3

What Does IntelliSense Offer?
In short, IntelliSense provides a means by which a developer can become more productive. This
productivity can be increased through the following features:

• Keyword Completion
• Syntax Tips
• Member Lists
• Value Lists
• Most Recently Used (MRU) Lists

Keyword completion comes in particularly useful by allowing a developer to enter some
minimum amount of unique characters, “subs” for “SubStr()” as an example, and have Visual
FoxPro automatically complete typing the rest as soon as the developer enters a “(“ in this case.
The “(“ triggers the IntelliSense features of Visual FoxPro 7 and will automatically replace, for
our example, “subs” with “SubStr.” However, the case can also be manipulated and determined
beforehand, but we’ll get into that later. So, in effect, Keyword Completion means a developer
shouldn’t have to type as much to create the same amount of code that he or she created in
earlier versions of Visual FoxPro.

Syntax Tips, one of my favorite features of IntelliSense, provide a quick “tip” on the syntax of a
given command. Visual FoxPro has such a robust function library that it is difficult for anyone to
remember the exact syntax of every function. Syntax tips “prompt” our memory for us, keeping
us from having to constantly go look up the syntax of a command in the help file.

Member Lists are a particularly useful feature to many of us. Since Visual FoxPro 7 is an object-
oriented programming language, we deal with objects and classes on a regular basis. However,
it can often times be difficult to remember every property, event, and method on every object or
class. That’s where member lists come in. When you enter the name of an object or the name of
a variable which is an object reference and type the “.”, Visual FoxPro will bring up a list
showing you all the properties, events, and methods on that object. This doesn’t only work for
objects created from Visual FoxPro classes, but it will also work on COM objects as well. This
means we don’t have to worry about possibly mistyping the name of a property, event, or
method on an object any longer.

Value Lists help out when a property has a “pre-defined” set of values that can be assigned to it,
or when a function can accept certain values as a parameter. Let’s examine the Sys() function
as an example. When we enter “Sys(“, Visual FoxPro brings up a list of all the possible values
that could be passed into the Sys() function as well as a brief description of what those values
do. This makes it much easier than having to open the help file to figure out which number to
pass to the Sys() function to get a certain behavior.

Most Recently Used Lists are nothing more than a recent history for certain commands within
Visual FoxPro. For instance, if you enter “Modi Form Test”, after you save your changes, if you

4 Leveraging the Power of IntelliSense

enter “Modi Form,“ Visual FoxPro displays a list of all your most recently used forms for you, at
the top of which will be “Test.”

But these features are common to every Microsoft programming language that has IntelliSense.
There are several things, however, about the Visual FoxPro version that makes it special. First,
it’s extensible. If it doesn’t do what you need it to, then you can write a process that will and
extend it that way. Second, it’s configurable. You can specify the case of the IntelliSense items,
whether or not you want IntelliSense to work automatically, manually, or not at all, etc. And last,
but not least, Visual FoxPro’s version of IntelliSense expands beyond the “()”, unlike some other
programming languages that we won’t mention (like Visual Basic).

Configuring IntelliSense
One of the greatest features about the Visual FoxPro implementation of IntelliSense is the
IntelliSense Manager. This is a form that enables you to customize how IntelliSense works and
provides a visual wrapper around the FoxCode.dbf table which is the table that drives the
IntelliSense features of Visual FoxPro 7. You can access this form either through the Tools
menu, or by typing “Do (_CodeSense)” in the Command Window. In either case, Visual FoxPro
will start the IntelliSense Manager application shown in Figure 1 below.

Figure 1 – The General tab of the IntelliSense Manager.

General Options
We can see from Figure 1, that many of the “generic” features of IntelliSense can be managed
from the General tab of the IntelliSense Manager. We can specify whether or not we even wish
to have IntelliSense turned “on” by checking or un-checking the check box labeled “Enable
IntelliSense”. We can also specify whether we want the Member Lists and Syntax Tips to show
up automatically, manually or not at all by selecting a value of “Automatic,” “Manual” or
“Disabled” from the combo boxes labeled “List members” and “Quick info tips.” In addition, we

EPS Software Whitepaper 5

have the ability to specify the case of functions and commands by selecting a value from the
combo boxes labeled “Functions” and “Commands.”

Types Options
The second tab of the IntelliSense Manager, labeled Types, contains a list of variable types that
may be assigned to variables for which IntelliSense will automatically include in the list that
shows up when you type something like “LOCAL loObject As” as shown in Figure 2.

Figure 2 – The Types tab of the IntelliSense Manager.

One important item to point out here is that you can add additional types as needed. However,
these types can be COM objects, Web Services or even your own Visual FoxPro classes. It’s
really up to you. The nice thing about registering COM object and Web Services as types is that
Visual FoxPro’s IntelliSense will automatically provide the Member Lists for you for those
variables.

Custom Options
The Custom tab of the IntelliSense Manager, shown in Figure 3, enables you to add your own
command abbreviations that can be expanded out. For instance, looking at Figure 3, we can
see that when we type “MC,” the “MC” will be expanded out to “Modify Command,” which saves
on the amount of typing we would otherwise have to perform. However, for more complex tasks,
you can also create scripts that are to be executed rather than being replaced with something,
but we’ll get into that later.

6 Leveraging the Power of IntelliSense

Figure 3 – The Custom tab of the IntelliSense Manager.

Advanced Options
Finally, the last tab of the IntelliSense Manager, labeled Advanced and shown in Figure 4
below, provides an entry-point into two other areas of the IntelliSense features within Visual
FoxPro 7. One is influencing the IntelliSense behavior in a more refined sense, and the other is
maintenance.

Figure 4 – The Advanced tab of the IntelliSense Manager.

Clicking Edit Properties… displays the Custom Properties Dialog, shown in Figure 5, while
clicking Cleanup…displays the Cleanup and Maintenance Dialog, shown in Figure 6.

EPS Software Whitepaper 7

Figure 5 – The Custom Properties dialog.

From Figure 5, you can see a whole set of options available to us. The first,
“lEnableFullSetDisplay” has control over whether Visual FoxPro’s IntelliSense automatically
expands out the full SET command in cases like “SET PATH TO.” If this property is set to True,
Visual FoxPro automatically expands “SET PATH” to “SET PATH TO”.

Other notable options include the “lPropertyValueEditors” and “lExpandCOperators” properties.
The “lPropertyValueEditors” property, when set to True, displays various dialogs like the Color
Dialog when attempting to programmatically assign a color value to a color property, like
BackColor. The “lExpandCOperators” property will expand statements like “i++” to “i = i + 1”.

Figure 6 – The Cleanup and Maintenance dialog.

The Cleanup and Maintenance Dialog, shown in Figure 6, provides the maintenance features
necessary to keep the IntelliSense features in working order. It will clean up any entries you
may have made to the FoxCode.dbf table and well as cleaning up or clearing your MRU lists.

8 Leveraging the Power of IntelliSense

Extending Visual FoxPro’s IntelliSense Capabilities
As with most other things in Visual FoxPro 7, you can extend the functionality of the
IntelliSense. This can be done through many means: you can add your own types to the Types
list, you can add custom commands to expand out and you can even write your own scripts to
execute. In this section, we will concentrate on writing your own custom scripts, as those will
probably be of the most interest to you.

Writing Custom Scripts
To create a new script, open the IntelliSense Manager, go to the “Custom” tab and type in an
abbreviation that you want Visual FoxPro to look for to tell it when to execute your script. As an
example, we will develop 2 scripts for documenting code changes. So, enter “BC” into the text
box labeled “Replace”. Now, click the “Add” button. You should now see a new item in the grid
showing up as “BC”. Now, click the button labeled “Script”. This will bring up a text editor. You
should already see a line in there that says “LPARAMETERS oFoxCode”. You’ll need to change
the text to read like the code shown below.

LPARAMETERS oFoxCode

If oFoxcode.Location = 0
 Return "BC"
EndIf

oFoxcode.ValueType = "V"

LOCAL lcReturn

lcReturn = "*{ Begin changes made by Travis " + Transform(DateTime())

Return lcReturn

I know what you’re saying: “What is oFoxCode?” Well, oFoxCode is a parameter that is passed
in to every script that gives you certain information such as which editor you’re in, what the
previous characters are, etc. The structure for the FoxCode object, taken from the Visual
FoxPro help file, is listed in the table below.

Property Description

Abbrev Contents of the Abbrev field

Case Contents of the Case field

Cmd Contents of the Cmd field

EPS Software Whitepaper 9

Property Description

CursorLocChar This is a special character denoting the location to place the cursor after
script (Default is "~" character)

Data Contents of the Data field

DefaultCase Default Case setting of FoxCode as derived from the Version record (Type
= "V")

Expanded Contents of the Expanded field

Filename Name of file being edited

FullLine Full text from the line being typed currently

Icon Icon for use with items array

Items Array for use in populating a dropdown list to be displayed as post script
action. Requires ValueType = "L"

Items[1,1] – text to display in list
Items[1,2] – value tip for item

The only required element is the first element for each row in the Items

array. By default the array is sorted ascended to allow for incremental

seeks. Users can use the ItemSort property to turn this off and use a

natural sort of array.

ItemScript Script for use with items array

ItemSort Whether to sort items array (default = .T.)

Location Type of editor being edited:

0 – Command Window

1 – Program

8 – Menu Snippet

10 Leveraging the Power of IntelliSense

Property Description

10 – Code Snippet

12 – Stored Procedure

Menuitem The menu item selected if user is running script with ValueType="L". Can
be used in follow up script.

ParamNum Parameter number of the function for script call made within a function

Save Contents of the Save field

Source Contents of the Source field

Timestamp Contents of the Timestamp field

Tip Contents of the Tip field

Type Contents of the Type field

UniqueId Contents of the UniqueId field

User Contents of the User field

UserTyped Text the user typed. Does not include triggerkey (use FullLine instead for
this).

ValueTip Quick Info tip to display when ValueType = "T"

ValueType Handler for post script action

L – displays a drop-down list populated from the Items array

V – displays Value

T – displays a Quick Info tip from ValueTip

Now then, if we go back to the code listing and examine it, we can see that we set the
ValueType property of the oFoxCode object to “V” to that Visual FoxPro will replace the “BC”
that we enter with “*{ Begin changes made by …”. Also, notice the “If” statement checking the

EPS Software Whitepaper 11

Location property of the oFoxCode object. This test is making sure we are in some form of
editor other than the Command Window, where it doesn’t make sense to have comments for
documentation.

To test this script, save it and then click OK in the IntelliSense Manager dialog. In the Command
Window, type BC and then a space. Nothing should happen and that’s the behavior we want.
Now, if we type Modi Comm and press Enter in the Command Window, we should see a
Program Editor. Now, type BC and a space. If everything worked correctly, “BC” should have
been replaced with something like “*{ Begin changes made by Travis 3/22/2002 1:20:49 PM”.

Now then, knowing when and where changes begin is great, but how about knowing when and
where changes end? Let’s add another script called “EC.” Follow the exact same steps outlined
above, except that when you get to the text editor; enter the text shown below.

LPARAMETERS oFoxCode

If oFoxcode.Location = 0
 Return "EC"
EndIf

oFoxcode.ValueType = "V"

LOCAL lcReturn

lcReturn = "*{ End changes made by Travis " + Transform(DateTime())

Return lcReturn

Summary
We have seen that although it may have taken the Visual FoxPro team a little while to
implement IntelliSense into Visual FoxPro 7, they have, as always, done a magnificent job in
providing us with a flexible solution that will meet our needs. Not only does it support the
standard IntelliSense features common to every Microsoft programming language, it also goes
above and beyond those features, offering us a great realm of possibilities. We have complete
control over the IntelliSense features within Visual FoxPro 7 and if something isn’t there that we
need, we can simply add it. After having studied the features of Visual FoxPro’s IntelliSense, I
can honestly say that, in my opinion, this makes the purchase of Visual FoxPro 7 worthwhile by
itself.

