

DilMad Enterprises, Inc. Whitepaper Page 1 of 32

WHITE PAPER

Query XML Data Directly from SQL Server 2000

By: Travis Vandersypen, President of DilMad Enterprises, Inc.

Abstract
XML is quickly becoming the preferred method of passing information, not only for the
internet, but also across applications, and even within the same application. Until now,
developers have been forced to create our own routines to convert data stored within a
database system into XML. With the release of SQL Server 2000, however, the potential
exists to query data directly from SQL Server into XML format.

With the advent of XML, and the increasing requirements for distributed applications in
today’s marketplace, a larger demand has been placed on the developer to provide
messaging and data in an XML format. Providing data in XML format, until now has
consisted of querying data in the form of a cursor or ADO RecordSet, and using a
conversion routine to convert the data from into XML format. Now with the new features
in SQL Server 2000, this task can be accomplished with minimal effort, which allows the
developer to concentrate on the more important task of writing the business logic.

SQL Server 2000 provides a new feature that allows the developer to query SQL Server
data and receive that data in XML format through the use of a special clause: FOR XML.
This clause provides 3 different options by which SQL Server can return data in XML
format: AUTO, RAW, and EXPLICIT.

Issuing the SQL Select command with FOR XML AUTO will return the result set in XML
format with each record having a node whose tag name is the same as the table name
on which the query was performed. Each node will have attributes equal to the
fieldnames specified in the query with values equal to the values of the fields within the
table. Using the FOR XML RAW clause will return XML in which each record is
represented by a node whose tag name is row and whose attributes are the fields from
the query. The last option, FOR XML EXPLICIT, uses queries written in a specific format
to return the XML in a specific format. However, these options are only available from
within the SQL Server Query Analyzer or by accessing SQL server through a URL.

DilMad Enterprises, Inc. Whitepaper Page 2 of 32

Contents

Configuring SQL Server 2000 for XML Support3

URL Queries ...9

FOR XML AUTO .. 10

FOR XML RAW ... 11

Style Sheet Transformations ... 12

Template Queries ..16

Dynamic Template Queries ... 21

Defining XPath Queries within Template Files 21

XPath Queries..22

Authoring Annotated XSD Schemas .. 22

XPath Syntax... 30

Alternative Ways to Query SQL Server 2000.............................31

Summary ...32

DilMad Enterprises, Inc. Whitepaper Page 3 of 32

Configuring SQL Server 2000 for XML Support
Before you can utilize the new XML support within SQL Server 2000, you must first
configure it to do so. Simply click on Start, Programs, Microsoft SQL Server XML Tools,
Configure IIS Support – Web Release 2. This will launch the configuration utility
necessary to provide XML support within SQL Server 2000 as shown in Figure 1 below.

Figure 1. The IIS Virtual Directory Management Console is where you can administer the XML
support for SQL Server.

Once you have the IIS Virtual Directory Management for SQL Server open, drill down in
the tree to the left until you get to the Default Web Site node or the web site from
which you wish to access SQL Server 2000. On the right side of the screen, right-click
and select New, Virtual Directory. This will bring up the New Virtual Directory Properties
dialog where you enter information regarding how SQL Server 2000 should be
configured to run when accessed from a URL as shown in Figure 2 below.

Figure 2. The General page of the Virtual Directory Properties dialog.

DilMad Enterprises, Inc. Whitepaper Page 4 of 32

On the first page, you will be required to give the new virtual directory a name and the
physical path on the hard drive associated with this virtual directory. This first page
determines how you may access SQL Server via HTTP. For instance, in the case of the
Default Web Site, if you entered a virtual directory name of SQL2000, you could access
it via HTTP as http://localhost/sql2000.

The second page, as shown in Figure 3 below, indicates how you wish to log into SQL
Server 2000.

Figure 3. The Security page of the Virtual Directory Properties dialog.

DilMad Enterprises, Inc. Whitepaper Page 5 of 32

The third page, shown below in Figure 4, allows you to specify the SQL Server
installation to use and the database name to access.

Figure 4. The Data Source page of the Virtual Directory Properties dialog.

DilMad Enterprises, Inc. Whitepaper Page 6 of 32

Page 4 shown below in Figure 5, allows you to indicate the different types of queries
that can be run: URL queries, Template queries, and/or XPath queries, as well as
whether or not HTTP Posts are allowed.

Figure 5. The Settings page of the Virtual Directory Properties dialog.

DilMad Enterprises, Inc. Whitepaper Page 7 of 32

The fifth page allows you to map various special virtual directories to your main SQL
Server virtual directory. If you want to execute Template Queries, you’ll need to at least
create a Template virtual directory here, and if you want to use XPath Queries, you’ll
need to create a Schema virtual directory here also. Figure 6 shows you the fifth page of
the dialog, while Figure 7 shows you the Virtual Name Configuration Dialog.

Figure 6. The Virtual Names page of the Virtual Directory Properties dialog.

DilMad Enterprises, Inc. Whitepaper Page 8 of 32

Figure 7. The Virtual Name Configuration dialog.

DilMad Enterprises, Inc. Whitepaper Page 9 of 32

There is one final page on the dialog for advanced configuration options. This page
allows you to specify the SQL ISAPI dll to use for the virtual directory, allows you to
specify some additional settings, and whether or not to cache various items in memory,
such as Templates, Schemas, and XSLT style sheets. Figure 8, below, shows you what
this final page looks like.

Figure 8. The Advanced page of the Virtual Directory Properties dialog.

Once you’ve configured IIS to support XML for SQL Server 2000, you can begin
accessing your new virtual directory via HTTP in the form of URL Queries, Template
Queries, and XPath Queries.

URL Queries
The easiest way in which to test or become familiar with URL queries from SQL Server is
to open Internet Explorer and enter queries into the Address space available. It is

DilMad Enterprises, Inc. Whitepaper Page 10 of 32

important to keep in mind however, that the XML string returned by SQL Server 2000 is
not “well-formed” XML. This is because there is no single root node from which all other
nodes are children. However, a parameter can be passed along with the query itself to
specify the root node, which will eliminate this problem by wrapping the returned XML
string with the node specified. To return XML data natively from SQL Server 2000, you
must include the FOR XML clause in your URL query. This clause can be one of the
following:

• AUTO

• RAW

• EXPLICIT

FOR XML AUTO
By specifying FOR XML AUTO as part of the URL query, SQL Server 2000 transforms
the result set into XML in which each record is represented with a tag for the table name
entered in the query and with and attribute on that tag for each field in the result set.

For instance, to the following query:

SELECT * FROM Customers

as a URL query looks like:

http://localhost/sql2000?sql=select+*+from+customers+for+xml+auto&root=re
sults

which returns all the customers records in the customers table wrapped with a root
node called results. Figure 9 is a representative sample of the XML returned from SQL
Server 2000.

Figure 9. The results of performing a URL query with For Xml Auto.

DilMad Enterprises, Inc. Whitepaper Page 11 of 32

As shown, each record is represented by a node called customers whose attributes are
the fields within the customers table. One thing to keep in mind is that XML is case-
sensitive and as such the XML tag for each record returned by SQL Server will be spelled
exactly the way in which it was specified in the query. That means:

http://localhost/sql2000?sql=select+*+from+customers+for+xml+auto&root=re
sults

returns a different XML grammar than:

http://localhost/sql2000?sql=select+*+from+Customers+for+xml+auto&root=re
sults

which means that an XSL Pattern match for one will not work for the other.

FOR XML RAW
Since that can be a problem at times, SQL Server 2000 allows the definition of a
constant row tag named row. To make a query against SQL Server 2000 and have it
return an XML grammar with row as the tag for each record returned in the result set,
simply include the FOR XML RAW clause in the URL query.

For instance, navigating to:

http://localhost/sql2000?sql=select+*+from+customers+for+xml+raw&root=res
ults

DilMad Enterprises, Inc. Whitepaper Page 12 of 32

returns all records in the customers table with a tag named results as the root node.
The main difference between this query and the previous ones is that every record is
now represented by a tag named row as shown in Figure 10, below.

Figure 10. The results of a URL query using For Xml Raw.

Style Sheet Transformations
Both of versions of the returned XML appear very similar to the way in which ADO stores
and loads RecordSets in XML format. However, this may not always coincide with the
grammar of XML that is expected within an application. For this reason, another
parameter, xsl, can be included with the URL to specify an XSL style sheet to use to
transform the native XML grammar given by SQL Server 2000 into the expected
grammar. Let’s look at the following example of an XSLT style sheet shown in Listing 1,
which, in this case, resides in the root of the Virtual Directory SQL2000:

Listing 1. Customers1.xsl contains a style sheet transformation example.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:template match="/">

<CUSTOMERS>
 <xsl:for-each select="Results/Customers">

DilMad Enterprises, Inc. Whitepaper Page 13 of 32

 <CUSTOMER>
 <CUSTOMERID><xsl:value-of
select="@CustomerID"/></CUSTOMERID>
 <COMPANY><xsl:value-of
select="@CompanyName"/></COMPANY>
 <CONTACT><xsl:value-of
select="@ContactName"/></CONTACT>
 <ADDRESS><xsl:value-of select="@Address"/></ADDRESS>
 <CITY><xsl:value-of select="@City"/></CITY>
 <PHONE><xsl:value-of select="@Phone"/></PHONE>
 </CUSTOMER>

 </xsl:for-each>
</CUSTOMERS>

 </xsl:template>
</xsl:stylesheet>

When the URL query:

http://localhost/sql2000?sql=select+*+from+customers+for+xml+auto&root=re
sults&xsl=customers1.xsl&contenttype=text/xml

is executed, the style sheet in Listing 1 is applied to the results and a different grammar
of XML is returned as shown in Figure 11.

Figure 11. The results of a URL query after the style sheet in Listing 1 is applied.

DilMad Enterprises, Inc. Whitepaper Page 14 of 32

Often times, however, it becomes necessary to present the results to an end-user in a
“grid” or “list” fashion. Using the following style sheet in Listing 2, coupled with the
contenttype parameter, allows the browser to display the result set as HTML.

Listing 2. Customers2.xsl creates an HTML table.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:template match="/">

<TABLE width="100%">
 <TR bgcolor="moccasin">
 <TD valign="top">Customer Id</TD>
 <TD valign="top">Company</TD>
 <TD valign="top">Contact</TD>
 <TD valign="top">Address</TD>
 <TD valign="top">City</TD>

DilMad Enterprises, Inc. Whitepaper Page 15 of 32

 <TD valign="top">Phone</TD>
 </TR>

 <xsl:for-each select="Results/Customers">

 <TR bgcolor="white">
 <TD valign="top"><xsl:value-of
select="@CustomerID"/></TD>
 <TD valign="top"><xsl:value-of
select="@CompanyName"/></TD>
 <TD valign="top"><xsl:value-of
select="@ContactName"/></TD>
 <TD valign="top"><xsl:value-of
select="@Address"/></TD>
 <TD valign="top"><xsl:value-of
select="@City"/></TD>
 <TD valign="top"><xsl:value-of
select="@Phone"/></TD>
 </TR>

 </xsl:for-each>
</TABLE>

 </xsl:template>
</xsl:stylesheet>

By specifying that the contenttype should be text/html, the browser will interpret the
resulting XML as HTML and display the results appropriately as indicated in Figure 12.

Figure 12. The results of a URL query after applying the style sheet in Listing 2.

DilMad Enterprises, Inc. Whitepaper Page 16 of 32

Template Queries
Another method of retrieving an XML result set from SQL Server 2000, is to use what’s
called Template queries. These are XML files that tell SQL Server how to run queries,
what the root node will be, etc. These files eliminate the need to specify the select
statement at the URL level. Revisiting our query:

SELECT * FROM Customers

as a Template query would appear as shown in Listing 3, below.

Listing 3. Customers1.xml lists a Template query to select all customers in Northwind.

<results xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 select * from customers for xml auto
 </sql:query>
</results>

DilMad Enterprises, Inc. Whitepaper Page 17 of 32

To run this query, save the above template as Customers1.xml and store it in the
Template virtual directory and simply navigate to:

http://localhost/sql2000/template/customers1.xml

which returns the XML in the native SQL Server format shown in Figure 13.

Figure 13. The results of navigating to Customers1.xml.

Replacing the keyword AUTO with RAW in the above Template query will return the
results shown in Figure 14.

Figure 14. The results of navigating to the revised Customers1.xml.

DilMad Enterprises, Inc. Whitepaper Page 18 of 32

To apply a style sheet to the result set, the Template query would appear as shown in
Listing 4.

Listing 4. Customers2.xml lists a Template query that uses a style sheet.

<results xmlns:sql="urn:schemas-microsoft-com:xml-sql"
sql:xsl='../customers1.xsl'>
 <sql:query>
 select * from customers for xml auto
 </sql:query>
</results>

which, when combined with the contenttype parameter, will return the results in
Figure 15.

Figure 15. The results of navigating to the Template shown in Listing 4.

DilMad Enterprises, Inc. Whitepaper Page 19 of 32

As with URL queries, you can format the final results to be displayed in HTML. In this
case, simply change the customers1.xsl filename to customers2.xsl. The results will be in
an HTML table as shown in Figure 16.

Figure 16. The results of changing the style sheet to Customers2.xsl.

DilMad Enterprises, Inc. Whitepaper Page 20 of 32

Template queries also have the potential to accept parameters to help filter the result
set. In this case, the Template file will appear as shown in Listing 5.

Listing 5. Customers4.xml lists a Template query that accepts parameters.

<results xmlns:sql="urn:schemas-microsoft-com:xml-sql"
sql:xsl='../customers1.xsl'>
 <sql:header>
 <sql:param name='CustomerId'>%</sql:param>
 </sql:header>
 <sql:query>
 select * from customers where customerid like @CustomerId for xml auto
 </sql:query>
</results>

In this example, we specify that this Template query will accept one parameter:
CustomerId, and that this parameter has a default value of %, which in conjunction with
the query, will return all records from the customers table. To execute this query, simply
navigate to:

DilMad Enterprises, Inc. Whitepaper Page 21 of 32

http://localhost/sql2000/template/customers4.xml?CustomerId=A%25

This will return only those records from the customers table where the CustomerId field
begins with an A as shown in Figure 17.

Figure 17. The results of navigating to Customers4.xml.

Dynamic Template Queries
Although it may be easier to create a Template query file on the server to execute a
query, SQL Server 2000 allows the content of the template to be specified dynamically
on the URL, by using the “template” parameter. This allows template queries to be
created and executed dynamically.

Defining XPath Queries within Template Files
Although you may access the XPath query directly from the URL, you can also use an
XPath query within a Template query file.

DilMad Enterprises, Inc. Whitepaper Page 22 of 32

XPath Queries
Imagine the potential of accessing your database without needing to any specifics about
how that data is stored. Imagine the possibilities of allowing the DBA the freedom to
change the database structure without affecting your software code. Impossible? Not
with XPath Queries and XDR Schemas. Using these two methods with each other allow
practically any developer to write a program to access data in SQL Server 2000 just by
knowing the structure of the XML documents returned from SQL Server 2000.

While both Template Queries and URL Queries allow the developer to retrieve XML data
back from SQL Server 2000, they do require knowledge of SQL Select statements,
stored procedures, and the structure of the database. However, by using XPath Queries
in conjunction with XDR Schemas, these knowledge requirements can be removed.

XML – Data Reduced (XDR) Schemas define the structure of the XML document returned
from SQL Server 2000 and enables various constraints to be placed upon the data
returned. Unlike a Document Type Definition (DTD), an XML Schema describes the
structure of an XML document using an XML grammar.

Authoring Annotated XSD Schemas
An XML – Data Reduced Schema is simply an XML Schema with specific attributes used
in defining the XML elements and attributes. Every XDR Schema must include the
following:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 …
</xsd:schema>

Notice, that the above example is an XML document with a root node of schema. This
may or may not make sense to you. Remember that an XML Schema defines the
structure and data constraints of an XML document using an XML grammar.

There are 2 basic attributes and 1 basic element needed to author XSD Schemas. The
attributes needed are sql:field and sql:relation. The element is the sql:relationship
element. The sql:relation attribute is used to map an element to a table. This has the
effect of creating 1 XML element for every record in the table. The sql:field attribute is
used to map a particular attribute or node value to a field from the related table. The
sql:relationship element is used to relate elements within the XML document to other
elements. It defines the 2 tables and the join condition necessary to relate them
together.

Using those XSD attributes and elements, an XSD schema can be authored to return
data from SQL Server 2000 in a specific format. The only required XSD attribute is the
sql:relation attribute. This attribute refers to a table or view in the database and can
be placed on an ElementType, element, or attribute element in the XSD Schema. The
following schema shown in Listing 6 is a simple example of using an sql:relation
attribute in an XSD Schema for the Customer table in the Northwind database.

DilMad Enterprises, Inc. Whitepaper Page 23 of 32

Listing 6. Customers1.xsd lists a simple annotated XSD schema.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="CUSTOMER" sql:relation="Customers">
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:string"/>
 <xsd:attribute name="CompanyName" type="xsd:string"/>
 <xsd:attribute name="ContactName" type="xsd:string"/>
 <xsd:attribute name="Address" type="xsd:string"/>
 <xsd:attribute name="City" type="xsd:string"/>
 <xsd:attribute name="Phone" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

By specifying the sql:relation attribute on an ElementType element within our
schema, the relation is inherited by all elements and attributes of that ElementType.
This means we do not need to specify the sql:relation attribute on every element or
attribute element within our schema. Because we defined our attribute names in the
exact manner they exist in the Northwind database, we did not need to use the
sql:field attribute. Keep in mind, that XML is case – sensitive. Therefore, the attribute
names defined above must match exactly with the field names defined in the database
for this XSD Schema to work. This schema returns an XML document whose structure
matches that of the one defined in the schema, as shown below in Figure 18.

Figure 18. The results of an XPath query performed against Customers1.xsd.

DilMad Enterprises, Inc. Whitepaper Page 24 of 32

The sql:field attribute may be used in conjunction with the sql:relation attribute to
create elements or attributes that do not exactly match their definitions in the database.
For instance, the following XSD Schema in Listing 7 will produce an XML document with
attributes for the fields in the Customer table.

Listing 7. Customers2.xsd lists an example of mapping attributes to fields in the
database.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:sql="urn:schemas-microsoft-com:mapping-schema"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="CUSTOMER" sql:relation="Customers">
 <xsd:complexType>
 <xsd:attribute name="Id" type="xsd:string" sql:field="CustomerID"/>
 <xsd:attribute name="Company" type="xsd:string"
sql:field="CompanyName"/>
 <xsd:attribute name="Contact" type="xsd:string"
sql:field="ContactName"/>

DilMad Enterprises, Inc. Whitepaper Page 25 of 32

 <xsd:attribute name="Address" type="xsd:string"/>
 <xsd:attribute name="City" type="xsd:string"/>
 <xsd:attribute name="Phone" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

Performing an XPath query against the schema in Listing 7 will produce the results
shown in Figure 19.

Figure 19. The results of performing an XPath query against Customers2.xsd.

Now let’s say we don’t like having the fields mapped to attributes. Instead, we could use
the following schema listed in Listing 8 to produce an XML document with elements for
the fields in the Customer table.

Listing 8. Customers3.xsd shows an example of mapping elements to fields.

<?xml version="1.0" encoding="UTF-8"?>

DilMad Enterprises, Inc. Whitepaper Page 26 of 32

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="CUSTOMER" sql:relation="Customers">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="CUSTOMERID" type="xsd:string"
sql:field="CustomerID"/>
 <xsd:element name="COMPANY" type="xsd:string"
sql:field="CompanyName"/>
 <xsd:element name="CONTACT" type="xsd:string"
sql:field="ContactName"/>
 <xsd:element name="ADDRESS" type="xsd:string" sql:field="Address"/>
 <xsd:element name="CITY" type="xsd:string" sql:field="City"/>
 <xsd:element name="PHONE" type="xsd:string" sql:field="Phone"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

Navigating to the schema in Listing 8 returns the results shown in Figure 20.

Figure 20. The results of performing an XPath query against Customers3.xsd.

DilMad Enterprises, Inc. Whitepaper Page 27 of 32

In addition to using the sql:relation and sql:field attributes, you can use the
sql:relationship element to produce nested XML documents where elements may
contain related child elements. A sample XSD Schema for this follows in Listing 9 below.

Listing 9. Customers4.xsd demonstrates how to define relationships between elements.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:sql="urn:schemas-microsoft-com:mapping-schema"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="CUSTOMER" sql:relation="Customers">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CUSTOMERID" type="xsd:string"
sql:field="CustomerID"/>
 <xsd:element name="COMPANY" type="xsd:string"
sql:field="CompanyName"/>
 <xsd:element name="CONTACT" type="xsd:string"
sql:field="ContactName"/>
 <xsd:element name="ADDRESS" type="xsd:string" sql:field="Address"/>

DilMad Enterprises, Inc. Whitepaper Page 28 of 32

 <xsd:element name="CITY" type="xsd:string" sql:field="City"/>
 <xsd:element name="PHONE" type="xsd:string" sql:field="Phone"/>

 <xsd:element name="ORDER" maxOccurs="unbounded"
sql:relation="Orders">
 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship parent="Customers" parent-key="CustomerID"
child="Orders" child-key="CustomerID"/>
 </xsd:appinfo>
 </xsd:annotation>

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ORDERID" type="xsd:integer"
sql:field="OrderID"/>
 <xsd:element name="ORDERDATE" type="xsd:date"
sql:field="OrderDate"/>

 <xsd:element name="DETAILS" maxOccurs="unbounded"
sql:relation="[Order Details]">
 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship parent="Orders" parent-key="OrderID"
child="[Order Details]" child-key="OrderID"/>
 </xsd:appinfo>
 </xsd:annotation>

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ORDERID" type="xsd:integer"
sql:field="OrderID"/>
 <xsd:element name="PRODUCTID" type="xsd:integer"
sql:field="ProductID"/>
 <xsd:element name="UNITPRICE" sql:field="UnitPrice">
 <xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:fractionDigits value="2"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="QUANTITY" type="xsd:positiveInteger"
sql:field="Quantity"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 </xsd:sequence>

DilMad Enterprises, Inc. Whitepaper Page 29 of 32

 </xsd:complexType>
 </xsd:element>

</xsd:schema>

Performing an XPath query against the schema shown in Listing 9 produces the
following output shown in Figure 21.

Figure 21. The results of performing an XPath query against Customers4.xsd.

There are 4 attributes on the sql:relationship element that must be specified: key,
key-relation, foreign-key, foreign-relation. The key-relation attribute specifies
the Parent Table and the key attribute specifies the key on the Parent Table to use to
relate it to a child table. The foreign-relation attribute specifies the Child Table and
the foreign-key attribute specifies the key on the Child Table used to relate it to the
Parent Table. SQL Server 2000 is able to relate and nest related XML elements using the
values specified in the attributes of the sql:relationship element.

DilMad Enterprises, Inc. Whitepaper Page 30 of 32

XPath Syntax
XPath Queries, coupled with XDR Schemas, allow the developer to access and query
data from SQL Server 2000 in the same manner as using the XMLDOM object. For
instance, navigating to the following URL:

http://localhost/sql2000/schema/customers1.xsd/CUSTOMER?root=ROOT

produces an XML document without writing a single line of an SQL Select statement.

Similarly, navigating to:

http://localhost/sql2000/schema/customers4.xsd/CUSTOMER?root=ROOT

produces an XML document with customers and their related orders.

Keep in mind that you may use the XMLDOM to query SQL Server 2000. For instance,
you could do the following:

Dim loXML Aa Object

SET loXML = CreateObject("MSXML2.DOMDocument")

loXML.Load(“http://localhost/sql2000/schema/customers4.xsd/CUSTOMER?root=
ROOT”)

The above example will load every customer with his or her appropriate orders into the
XMLDOM object. However, rather than download the entire set of data into the XMLDOM
object and then query its contents for specific nodes, why not let SQL Server 2000 do
that for you automatically on the server and send back a reduced data set? Let’s say you
only wanted customer ALFKI. In this scenario, simply navigate to:

http://localhost/sql2000/schema/customers4.xsd/CUSTOMER[CUSTOMERID=’AL
FKI’]?root=ROOT.

The above URL will produce the following results shown in Figure 22.

Figure 22. The results of navigating to the above URL.

DilMad Enterprises, Inc. Whitepaper Page 31 of 32

Notice that the syntax for an XPath query is almost identical to the syntax used for an
XSL Pattern match within the XMLDOM itself. In truth, the main difference is the
exclusion of the root node in the XPath query that would otherwise have to be included
in an XSL Pattern match in the XMLDOM.

Alternative Ways to Query SQL Server 2000
Although this paper concentrates on using Internet Explorer to query data from SQL
Server 2000 in XML format, Internet Explorer is not the only tool that can be used.
Microsoft’s XMLDOM object can load an XML file via a URL. This can provide an
alternative method of accessing SQL Server data in XML format without having to use
Internet Explorer. Since loading information from a URL may take a little longer than
loading a file from a hard drive, it is important that you set the ASync property of the
DOMDocument object to false. Another alternative available with .NET are the classes
contained within the System.Xml namespace, or even the DataSet class in the
System.Data namespace.

DilMad Enterprises, Inc. Whitepaper Page 32 of 32

Summary
XML is quickly becoming the preferred method of passing information, not only for the
Internet, but also across applications, and even within the same application. Until now,
developers have been forced to create their own routines to automate messaging and to
convert data contained within a database into XML.

Now, with SQL Server 2000, much of those these tasks can be handled in a much more
efficient manner. That leaves the developer with more time to perform the more
important tasks of actual programming, by not having to worry about writing conversion
routines to convert relational data into XML. What else can be said, except that the
future looks bright.

